Revision Notes
 Class - 10 Maths

 Chapter 1 - Real Numbers

 Chapter 1 - Real Numbers}

- Real numbers:

- All rational and irrational numbers taken together make the real numbers. On the number line, any real number can be plotted.

- Euclid's Division Lemma:

- A lemma is a verified statement that is utilised to prove another. Euclid's Division Lemma states that for any two integers a and b, there exists a unique pair of integers q and r such that $a=b \times q+r$ where $0 r<b \leq$.
- The lemma can be simply stated as : Dividend = Divisor \times Quotient + Remainder
- For any pair of dividend and divisor, the quotient and remainder obtained are going to be unique.

- Euclid's Division Algorithm:

- An algorithm is a set of well-defined steps that describe how to solve a certain problem. The Highest Common Factor (HCF) of two positive integers is computed using Euclid's division algorithm.
- Follow the steps below to find the HCF of two positive integers, say cand d, with $\mathrm{c}>\mathrm{d}$.

Step 1: We apply Euclid's Division Lemma to find two integers q and r such that c $=d \times q+r$ where $0 r<d \leq$.

Step 2: If $r=0$, the H.C.F is d, else, we apply Euclid's division Lemma to d (the divisor) and r (the remainder) to get another pair of quotient and remainder.

Step 3: Repeat Steps 1-3 until the remainder is zero. The needed HCF will be the divisor at the last step.

- The Fundamental Theorem of Arithmetic:

The process of expressing a natural number as a product of prime numbers is known as prime factorization. Apart from the sequence in which the prime components occur, the prime factorisation for a given number is unique.

Example: $12223=\times \times$, here 12 is represented as a product of its prime factors 2 and 3.

- Finding LCM and HCF:

- HCF is the product of the smallest power of each common prime factor in the given numbers.
- LCM is the product of the greatest power of each prime factor, involved in the given numbers.
- For any two positive integers a and b, HCF $a, b \times L C M a, b=a \times b()()$
- L.C.M can be used to find common occurrence sites. For instance, the time when two people running at different speeds meet, or the ringing of bells with various frequencies.
- Rational and Irrational numbers:
- If a number can be expressed in the form p / q where p and q are integers and q $0 \neq$, then it is called a rational number.
- If a number cannot be expressed in the form p / q where p and q are integers and q $0 \neq$, then it is called an irrational number.
- Number Theory:
- If p (a prime number) divides $2 a$, then p divides a as well. For example, 3 divides 26 , resulting in 36 , implying that 3 divides 6 . - The sum or difference of a rational and an irrational number is irrational
- A non-zero rational and irrational number's product and quotient are both irrational.
- p is irrational when p is a prime number.

For example, 7 is a prime number and 7 is irrational. The preceding statement can be proven by the process of "Proof by contradiction".

- Decimal Expansions of Rational Numbers:
- Let $\mathrm{px}=\mathrm{q}$ be a rational number with the prime factorization n m 25 , where n and m are non-negative integers. The decimal expansion of x then comes to an end. Then x has a non-terminating repeated decimal expansion (recurring).
- If $a b$ is a rational number, then its decimal expansion would terminate if both of the following conditions are satisfied :
a) The H.C.F of a and b is 1 .
b) b can be expressed as a prime factorisation of 2 and 5 i.e in the form nm 25 where either m or n, or both can be zero.
- If the prime factorisation of b contains any number other than 2 or 5 , then the decimal expansion of that number will be recurring.

