Revision Notes

Class - 10 Maths

Chapter 5 - Arithmetic Progression WWW.SARKARIPUR.COM

Definition of Arithmetic Progression

- An arithmetic progression is a sequence of numbers, obtained by adding a fixed number to the preceding term starting from the first term such that the difference between each consecutive term remains the same.
- Each of the numbers in the list is called a term and the fixed number is called the common difference of the AP which can be any integer.

For example: $2,5,8,11 \ldots$. having common difference of 3.

General term of an AP

1. The general form of an $A P$ is:
$a, a+d, a+2 d, a+3 d, \ldots ., a+(n-1) d$
2. An AP with finite number of terms is called a finite AP having a+(n-1)d as the last term. An AP which neither has a finite number of terms nor has a last term is called an infinite AP.

For example:
a) Finite AP: $1,3,5,7, \ldots ., 25$
b) Infinite AP: $2,4,6,8 . \ldots . . \infty$
3. The $n^{\text {th }}$ term of the AP: $a_{n}=a+(n-1) d$, where a is the first term of the sequence and d is the common difference.

The Second term: $a_{2}=a+(2-1) d=a+d$

Similarly, the third term $a_{3}=a+(3-1) d=a+2 d$
The fourth term $\mathrm{a}_{4}=\mathrm{a}+(4-1) \mathrm{d}=\mathrm{a}+3 \mathrm{~d}$ and so on till the last term.

Example 1:

An AP has a first term 3, common difference 4 . Find the third and fifth term of the AP.

Solution:

$\mathrm{a}=3, \mathrm{~d}=4$
$a_{3}=3+(3-1) 4$
$a_{3}=11$
4. $n^{\text {th }}$ term of an AP from the end: $t_{n}=L-(n-1) d$, where L is the last term of the AP.

Example 2:
An AP has a common difference 2 and last term 24 . Find the fourth term of the AP from the end.

Solution:

$d=2, L=24$
$\mathrm{t}_{4}=24-(4-1) 2$

Sum of the terms of an AP

1. Sum of n terms of an AP if first term and common difference is given:

$$
S=\frac{n}{2}(2 a+(n-1) d)
$$

2. Sum of n terms of an AP if first term and last term I is given:
$\mathrm{S}=\frac{n}{2}(\mathrm{a}+1)$
Example 3:
Find the sum of first 10 terms of the AP 1,4,7,10..... 34 .

Solution:

$S=\frac{10}{2}(2 \times 1+(10-1) 3)$
$=5(2+27)$
$=5 \times 29$
$=145$

